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Introduction
Einstein’s field equations of general relativity relate the geometry of
spacetime to the local matter content in the universe according to

Gab = 8πTab , (1.1)

where Gab is the symmetric Einstein tensor defined by

Gab = R(4)
ab −

1
2

gab R(4) . (1.2)

For all but the simplest systems, analytic solutions for the evolution
of such systems do not exist. Hence the task of solving Einstein’s
equations must be performed numerically on a computer.

To construct algorithms to do this we first have to recast Einstein’s
four-dimensional field equations into a form that is suitable for
numerical integration.
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Cauchy Problem

The problem of evolving the gravitational field in general relativity can
be posed in terms of a traditional initial value problem or “Cauchy”
problem.

Given adequate initial (and boundary) conditions, the fundamental
equations must predict the future (or past) evolution of the system.

Einstein’s equation is a coupled system of nonlinear second-order
partial differential equations for the metric components gab. We need
specify two initial conditions gab and ∂tgab.

t t + δt ...

gab
∂tgab−→ g′ab −→ ...

∂tgab
∂2

t gab−→ ∂tg′ab −→ ...

gab =


g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33


Yu Liu (HUST) Numerical Relativity September 19, 2020 4 / 41



Bianchi identities

The Bianchi identities

∇bGab = 0 (1.3)

give

∂tGa0 = −∂iGai − GbcΓa
bc − GabΓc

bc (1.4)

Since no term on the right hand side of equation contains third time
derivatives or higher, the four quantities Ga0 cannot contain second
time derivatives. Hence the four equations

Ga0 = 8πTa0 (1.5)

do not furnish any of the information required for the dynamical
evolution of the fields.
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Gauge freedom

Since gab is a tensor, it obeys the following relation for the coordinate
transformation xµ → x′µ:

gα′β′ =
∂xα

∂x′α′
∂xβ

∂x′β′
gαβ (1.6)

This shows that by an appropriate choice of the coordinates, we set at
least 4 components of gα′β′ to be a desired form, e.g., gtt = −1 and
gtk = 0.

This is called the gauge freedom and for solving Einstein’s equation,
we have to specify a gauge condition.

This is the reason for the mismatch between the required number (10)
of second time derivatives ∂2

t gab and the available number (6) of
dynamical field equations.
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Einstein’s equation

Ga0 = 8πTa0 (1.7)

supply four constraints on the initial data, i.e. four relations between gab
and ∂tgab on the initial hypersurface. The only truly dynamical
equations must be provided by the six remaining relations

Gij = 8πT ij (1.8)

The full system of Einstein’s equation is still well posed, because of the
Bianchi identities (1.3). If the four initial-value equations are satisfied
on some spacelike hypersurface, then the Bianchi identities guarantee
that the evolution equations preserve the constraints on neighboring
spacelike hypersurfaces.
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Analogy Maxwell’s equations

Maxwell’s equations naturally split into two groups. The first group can
be written as

CE ≡ DiEi − 4πρ = 0
CB ≡ DiBi = 0

(1.9)

The above equations involve only spatial derivatives of the electric and
magnetic fields and hold at each instant of time. They therefore
constrain any possible configurations of the fields, and are
correspondingly called the constraint equations.
The second group of Maxwell equations is

∂tEi = εijkDjBk − 4πji
∂tBi = −εijkDjEk (1.10)

These equations describe how the fields evolve forward in time, and
are therefore called the evolution equations.
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Formulation

The seminal work of Yvonne Choquet-Bruhat published in 1952
demonstrates that it is possible to formulate Einstein’s equations as an
initial value problem.

Formulation
A choice of variables and of evolution equations for them is called a
formulation of the Einstein equations.

The 3+1 formalism is the most commonly used in numerical relativity,
but it is certainly not the only one. It provides a nice geometric
interpretation of the “foliation” of spacetime, i.e., the way in which
successive time slices are chosen to fill spacetime.
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Foliations of Spacetime
Any globally hyperbolic spacetime (M, g) can be foliated by a family of
spacelike hypersurfaces (Σt)t∈R.

By foliation or slicing, it is meant that there exists a smooth scalar field
t̂ onM, which is regular (in the sense that its gradient never vanishes),
such that each hypersurface is a level surface of this scalar field:

∀t ∈ R, Σt := {p ∈M, t̂(p) = t}. (2.1)
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Foliations of Spacetime

Since t̂ is regular, the hypersurfaces Σt are non-intersecting:

Σt ∩ Σt′ = ∅ for t 6= t′. (2.2)

Each hypersurface Σt is called a leaf or a slice of the foliation. We
assume that all Σt’s are spacelike and that the foliation coversM:

M =
⋃
t∈R

Σt. (2.3)

The parameter t an then be considered as a “universal time function”
(but one must be careful, t does not necessarily coincides with the
proper time of any observer).
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Normal vector
From t we can define the 1-form

Ωa = ∇at. (2.4)

The 4-metric gab allows us to compute the norm of Ωa, which we call
−α−2

‖Ω‖2 = gab∇at∇bt ≡ − 1
α2 . (2.5)

We assume that α > 0, so that Ωa is timelike and the hypersurface Σ is
spacelike everywhere.
We can now define the unit normal to the slices as

na ≡ −gab(αΩa). (2.6)

Here the negative sign has been chosen so that na points in the
direction of increasing t.
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Spatial metric

With the normal vector we can now construct the spatial metric γab that
is induced by gab on the three-dimensional hypersurfaces Σ

γab = gab + nanb. (2.7)

This metric allows us to compute distances within a slice Σ. To see
that γab is purely spatial, i.e., resides entirely in Σ with no piece along
na, we contract it with the normal na,

naγab = nagab + nananb = nb − nb = 0 (2.8)

The inverse spatial metric can be found by raising the indices of γab
with gab,

γab = gacgbdγcd = gab + nanb. (2.9)
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Projection operators

Next we break up 4-dimensional tensors by decomposing them into a purely spatial
part, which lies in the hypersurfaces Σ, and a timelike part, which is normal to the
spatial surface. To do so, we need two projection operators.
The first one, which projects a 4-dimensional tensor into a spatial slice, can be found
by raising only one index of the spatial metric γab

γa
b ≡ δa

b + nanb. (2.10)

Similarly, we may define the normal projection operator as

Na
b ≡ −nanb. (2.11)

We can now use these two projection operators to decompose any tensor into its
spatial and timelike parts. For example, we can write an arbitrary vector va as

va = δa
bvb = (γa

b + Na
b ) vb. (2.12)
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Field equations in the 3+1 formalism

In order to write down the Einstein equations in 3+1 form, we will use
the projection operator γa

b , together with the normal vector na, to
separate Einstein’s equations in three groups:

Normal projection (1 equation):

nanb (Gab − 8πTab) = 0 (2.13)

Mixed projections (3 equations):

γb
anc (Gbc − 8πTbc) = 0 (2.14)

Projection onto the hypersurface (6 equations):

γc
aγ

d
b (Gcd − 8πTcd) = 0 (2.15)
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Three-dimensional covariant derivative

We can construct three-dimensional covariant derivative by projecting all indices
present in a 4-dimensional covariant derivative into Σ.
For a scalar f , for example, we define

Daf ≡ γb
a∇bf , (2.16)

The three-dimensional Riemann tensor associated with γab is defined by requiring that

Rd
cbawd = 2D[aDb]wc,

Rd
cband = 0,

(2.17)

for any spatial vector wd.

Note
The three-dimensional covariant derivative is associated with the spatial metric γab,
that is,

Daγbc = 0 (2.18)
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Extrinsic curvature
Using the projection operator, the extrinsic curvature tensor is defined
as:

Kab ≡ −γc
aγ

d
b∇cnd. (2.19)

By definition, the extrinsic curvature is symmetric and purely spatial.
The extrinsic curvature therefore provides information on how much
the normal vector changes from point to point across a spatial
hypersurface.
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Extrinsic curvature

Alternatively, we can write the extrinsic curvature as

Kab = −1
2
Lnγab, (2.20)

where Ln denotes the Lie derivative along na. Since na is a timelike
vector, the extrinsic curvature can be interpretation as the “time
derivative” of the spatial metric γab as seen by the Eulerian observers.

Note
We already have an evolution equation for the spatial metric γij. In
order to close the system we still need an evolution equation for Kij. It
is important to notice that until now we have only worked with purely
geometric concepts, and we have not used the field equations at all. It
is precisely from the field equations that we will obtain the
evolution equations for Kij.
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Hamiltonian constraint

From the normal projection we find the following equation:

R + K2 − KabKab = 16πρ, (2.21)

where R is the Ricci scalar associated with the 3-metric, K is the trace
of the extrinsic curvature tensor, and ρ is the energy density of matter
as measured by the Eulerian observers:

ρ ≡ nanbTab. (2.22)

Equation (2.21) contains no time derivatives. Because of this, the
equation is not a dynamical equation but rather a “constraint” of the
system. As it is related with the energy density, it is known as the
“hamiltonian” constraint.
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Momentum constraints

From the mixed projection of the field equations we find:

DbKb
a − DaK = 8πSa, (2.23)

where now Sa is the momentum flux of matter as measured by the
Eulerian observers:

Sa ≡ −γb
ancTbc. (2.24)

Equation (2.23) again has no time derivatives, so it is another
constraint. These equations are known as the “momentum”
constraints.
The existence of the constraints implies that in general relativity it is
not possible to specify arbitrarily all 12 dynamical quantities {γab,Kab}
as initial conditions. The initial data must already satisfy the
constraints, otherwise we will not be solving Einstein’s equations.
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Evolution equations
The remaining 6 equations are obtained from the projection onto the
hypersurface and contain the true dynamics of the system.

LnKab =− 1
α

DaDbα+ (Rab − 2KacKc
b + KKab)

− 8π
(

Sab −
1
2
γab(S− ρ)

)
,

(2.25)

where Sab is the stress tensor of matter, defined as:

Sab ≡ γc
aγ

d
bTcd,

S ≡ Sa
a.

(2.26)

Equations (2.20) and (2.25) form a closed system of evolution
equations.

The Lie derivative along na, Ln, is not a natural time derivative.
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Two neighboring spatial hypersurfaces

Let ta be a timelike vector field on
the spacetime which is the tangent
to the time axis, ta = (∂/∂t)a. ta will
connect points with the same
spatial coordinates on neighboring
time slices.

Note that ta is not always normal to Σt, and thus, it has components
both on Σt and along na. We decompose ta into two components as

α := −tana, βb := taγb
a (2.27)

Here α and βa are called the lapse function and the shift vector,
respectively. Using these quantities, ta is written as

ta = αna + βa (2.28)
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Coordinate congruence ta

Consider now the Lie derivative of γab and Kab along ta. We find

LtKab =− DaDbα+ α (Rab − 2KacKc
b + KKab)

− 8πα
(

Sab −
1
2
γab(S− ρ)

)
+ LβKab

(2.29)

and

Ltγab = −2αKab + Lβγab (2.30)

The lapse and shift do not appear in the constraint equations. They
appear in the evolution equations, but without time derivatives. These
quantities may be chosen freely, without changing the physical solution
of the Einstein equation. However, the lapse and shift do not
completely specify the coordinate gauge. They specify our temporal
gauge choice.
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Choosing Basis Vectors

So far, we have expressed our equations in a covariant, coordinate independent
manner, i.e. the basis vectors ea have been completely arbitrary. It is quite intuitive
that things will simplify if we adopt a coordinate system that reflects our 3 + 1 split of
spacetime in a natural way.
To do so, we first introduce a basis of three spatial vectors ea

(i) that reside in a
particular time slice Σ

naea
(i) = 0. (2.31)

We extend our spatial vectors to other
slices Σ by Lie dragging along ta,

Ltea
(i) = 0, (2.32)

As the fourth basis vector we pick ea
(0) = ta, the Lie derivative along ta reduces to a

partial derivative with respect to t: Lt = ∂t.
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Tensor components

Since the ea
(i) span Σ, equation (2.31) implies that the covariant

spatial components of the normal vector have to vanish,

ni = 0. (2.33)

Since spatial tensors vanish when contracted with the normal
vector, this also means that all components of spatial tensors
with a contravariant index equal to zero must vanish. For the shift
vector, for example, this implies naβ

a = n0β
0 = 0 and hence

β
a

=
(

0, βi
)
. (2.34)

By definition, ta = (1, 0, 0, 0). Solving equation (2.28) for na

then yields the contravariant components

na
=
(
α
−1
,−α−1

β
i
)
, (2.35)

and from the normalization condition nana = −1 we find

na = (−α, 0, 0, 0). (2.36)

From the definition of the spatial metric (2.7) we have

γij = gij, (2.37)

meaning that the metric on Σ is just the spatial part of the
four-metric.

Since zeroth components of spatial contravariant tensors have
to vanish, we also have γa0 = 0. The inverse metric can
therefore be expressed as

gab
= γ

ab − nanb
=

(
−α−2 α−2βi

α−2βj γij − α−2βiβj

)
.

(2.38)
We can now invert (2.38) and find the components of the
four-dimensional metric

gab =

(
−α2 + βlβ

l βi
βj γij

)
. (2.39)

Equivalently, the line element may be decomposed as

ds2
= −α2dt2 + γij

(
dxi

+ β
idt
) (

dxj
+ β

jdt
)
. (2.40)

which is often refered to as the metric in 3 + 1 form.
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ADM Equations
The entire content of any spatial tensor is available from their spatial components. This is
obviously true for contravariant components, since their zeroth component vanishes, but
also holds covariant components. Therefore, the entire content of the decomposed Einstein
equations is contained in their spatial components alone.

We can rewrite the Hamiltonian constraint (2.21),

R + K2 − KijKij = 16πρ, (2.41)

the momentum constraint (2.23),

Dj
(
Kij − γijK

)
= 8πSi, (2.42)

the evolution equation for the spatial metric (2.20),

∂tγij = −2αKij + Diβj + Djβi, (2.43)

and the evolution equation for the extrinsic curvature (2.25),

∂tKij =− DiDjα+ α
(

Rij − 2KikKk
j + KKij

)
− 8πα

(
Sij −

1
2
γij(S− ρ)

)
+ βkDkKij + KikDjβ

k + KkjDiβ
k.

(2.44)
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Gauge
The freedom in choosing the gauge variables is a mixed blessing. On the one hand, it allows us
to choose things in a way that simplifies the equations, or makes the solution better behaved. On
the other hand, we are immediately faced with the question: What is a “good” choice for the
functions α and βi? Remember that this decision has to be made even before we start the
evolution.
Let us first consider the simplest possible choice,

α = 1, βi = 0. (2.45)

In the context of numerical relativity this gauge choice is often called geodesic slicing.
Coordinate observers move with 4-velocities ua = ta. Thus with βi = 0, coordinate observers
coincide with normal observers ua = na. With α = 1, the proper time intervals that they measure
agree with coordinate time intervals. Their acceleration is

ab = nb∇bna = Db lnα = 0. (2.46)

Evidently, since their acceleration vanishes, normal observers are freely-falling and therefore
follow geodesics.

Despite its simplicity, geodesic slicing tends to form coordinate singularities very quickly during
an evolution. This result is not surprising, since geodesics tend to focus in the presence of
gravitating sources.
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Analogy Maxwell’s equations

It is possible to bring Maxwell’s equations into a form that is closer to
the 3+1 form of Einstein’s equations. To do so, we introduce the vector
potential Aa =

(
Φ,Ai

)
and write Bi as

Bi = εijkDjAk (2.47)

By construction, Bi automatically satisfies the constraint DiBi = 0. The
two evolution equations can be rewritten in terms of Ei and Ai

∂tAi = −Ei − DiΦ

∂tEi = DiDjAj − DjDjAi − 4πji
(2.48)

With the vector potential Ai we have introduced a gauge freedom into
electrodynamics which is expressed in the freely specifiable
gauge variable Φ.
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It is instructive to compare the standard 3 + 1 gravitational field
equations with Maxwell’s equations of electrodynamics.

∂tAi = −Ei − DiΦ

∂tEi = DiDjAj − DjDjAi − 4πji

∂tγij =− 2αKij + Diβj + Djβi

∂tKij =− DiDjα+ α
(
Rij − 2KikKk

j + KKij
)

− 8πα
(

Sij −
1
2
γij(S− ρ)

)
+ βkDkKij + KikDjβ

k + KkjDiβ
k.

If we identify the vector potential Ai with the spatial metric γij and the
electric field Ei with the extrinsic curvature Kij. The right-hand sides of
equation ∂tγij involve a field variable and a spatial derivative of a gauge
variable, while the right-hand sides of equation ∂tKij involve matter
sources as well as second spatial derivatives of the field variable. The
most important differences between the two theories are also
obvious: electromagnetism is a linear, vector field theory, while
general relativity is a nonlinear, tensor field theory.
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Hyperbolic
Consider a system of evolution equations:

∂tu + Ai · ∂iu = S. (3.1)

where u is a solution vector, S is a source vector, and where we have called the matrix A the
velocity matrix.

Most differential evolution equations in physics can be written in this form. In the case when there
are higher order derivatives, one can always define auxiliary variables in order to obtain a first
order system.

We call a problem well-posed if we can define some norm ‖ ... ‖ so that the norm of the solution
vector satisfies ∥∥u

(
t, xi)∥∥ ≤ keαt ∥∥u

(
0, xi)∥∥ (3.2)

for all times t ≥ 0. Here k and α are two constants that are independent of the initial data
u
(
0, xi

)
. Stated differently, solutions of a well-posed problem cannot increase more rapidly than

exponentially.

From a numerical perspective, however, exponentially growing modes are still very bad, and can
easily terminate a simulation after only a short time. From a numerical perspective, then,
well-posedness is a necessary but not a sufficient condition.
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Hyperbolicity properties of the ADM

Even thought the ADM equations are the starting point of numerical relativity, in
practice they have not turned out to be very well behaved with respect to small
constraint violations. The ADM equations are not very stable with respect to
constraint violations. This has prompted much effort in developing alternative
formulations of the 3+1 Einstein equations.

Rij =
1
2
γkl

∂i∂lγkj + ∂k∂jγil − ∂i∂jγkl︸ ︷︷ ︸
mixed derivative terms

− ∂k∂lγij

+γkl (Γm
ilΓmkj − Γm

ijΓmkl
)

Analogy Maxwell’s Equations
In electrodynamics, it would be desirable to eliminate the mixed derivative terms
DiDjAj. The most straightforward approach is to choose a Coulomb gauge DiAi = 0.

In general relativity, an analogous approach can be taken by choosing harmonic
coordinates.
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Harmonic Coordinates

Consider a contraction of the four dimensional connection coefficients

Γ(4) a ≡ gbc Γ
(4) a

bc = − 1
|g|1/2∂b

(
|g|1/2gab

)
= 0 (3.3)

This bring the four-dimensional Ricci tensor R(4)
ab into a particularly

simple form.
Inserting the metric (2.38) into equation (3.3) shows that in harmonic
coordinates the lapse and shift satisfy the coupled set of hyperbolic
equations (

∂t − βj∂j
)
α = −α2K(

∂t − βj∂j
)
βi = −α2 (γij∂j lnα+ γjkΓi

jk
) (3.4)

This approach has disadvantages, too. In general relativity, these
coordinates may lead to coordinate singularities.
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BSSN Formulation

The BSSN scheme has been devised by Shibata and Nakamura in
1995 [Shibata and Nakamura, 1995]. It has been re-analyzed by
Baumgarte and Shapiro in 1999 [Baumgarte and Shapiro, 1998], with
a slight modification, and bears since then the name BSSN for
Baumgarte-Shapiro-Shibata-Nakamura.
The BSSN formulation is obtained from the ADM formulation by
introducing the new variables. The BSSN formalism adopts a similar
strategy to simplify the three-dimensional, spatial Ricci tensor by
absorb the mixed second derivatives.

Conformal Transformations
Conformal connection function
Constraint propagation and damping
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Conformal Transformations
First of all the metric is split into a conformal metric

γ̄ij = e−4φγij (3.5)

and a conformal factor

φ =
1

12
log γ (3.6)

The BSSN formulation also assumes that γ̄ = det (γ̄ij) = 1 in Cartesian coordinates. Loosely
speaking, the conformal factor absorbs the overall scale of the metric, which leaves five degrees
of freedom in the conformally related metric.
We can split the Ricci tensor into two terms

Rij = R̄ij + Rφij (3.7)

where Rφij depends only on the conformal function φ.
Then the extrinsic curvature is split into its trace K and a traceless part:

Āij = e−4φ
(

Kij −
1
3
γijK

)
(3.8)
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Conformal connection function

We can now define “conformal connection functions”

Γ̄i ≡ γ̄ jkΓ̄i
jk = −∂jγ̄

ij. (3.9)

Here the Γ̄i
jk are the connection coefficients associated with γ̄ij. In terms of these

conformal connection functions we can now write the Ricci tensor as

R̄ij = −1
2
γ̄ lm∂m∂lγ̄ij + γ̄k(i∂j)Γ̄

k + Γ̄kΓ̄(ij)k + γ̄ lm
(

2Γ̄k
l(iΓ̄j)km + Γ̄k

imΓ̄klj

)
. (3.10)

Since the Γ̄i are evolved as independent functions, the defining relation (3.9) serves
as a new constraint equation. Adopting this approach requires us to derive separate
evolution equations for the Γ̄i. We interchange a partial time and space derivative in
the definition (3.9) to obtain

∂tΓ̄
i =− 2Ãij∂jα+ 2α

(
Γ̄i

jkÃkj − 2
3
γ̄ ij∂jK − 8πγ̄ ijSj + 6Ãij∂jφ

)
+ βj∂jΓ̄

i − Γ̄j∂jβ
i +

2
3

Γ̄i∂jβ
j +

1
3
γ̄ li∂l∂jβ

j + γ̄ lj∂j∂lβ
i

(3.11)
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The BSSN equations
We call φ, K, γ̄ij, Ãij and Γ̄i the BSSN variables. In terms of these variables the Hamiltonian constraint becomes

0 = H = γ̄
ijD̄iD̄je

φ −
eφ

8
R̄ +

e5φ

8
ÃijÃ

ij −
e5φ

12
K2

+ 2πe5φ
ρ (3.12)

while the momentum constraint becomes

0 =Mi
= D̄j

(
e6φÃji

)
−

2

3
e6φD̄iK − 8πe6φSi (3.13)

The evolution equation for γij splits into two equations,

∂tφ = − 1
6αK + βi∂iφ + 1

6 ∂iβ
i

∂t γ̄ij = −2αÃij + βk∂kγ̄ij + γ̄ik∂jβ
k + γ̄kj∂iβ

k − 2
3 γ̄ij∂kβ

k (3.14)

while the evolution equation for Kij splits into the two equations

∂tK =− γijDjDiα + α

(
ÃijÃ

ij
+

1

3
K2
)

+ 4πα(ρ + S) + β
i
∂iK

∂t Ãij =e−4φ
(
−
(

DiDjα
)TF

+ α
(

RTF
ij − 8πSTF

ij

))
+ α

(
KÃij − 2ÃilÃ

l
j

)
+ β

k
∂k Ãij + Ãik∂jβ

k
+ Ãkj∂iβ

k −
2

3
Ãij∂kβ

k

(3.15)

The Γ̄i are now treated as independent functions that satisfy their own evolution equations,

∂tΓ̄
i
=− 2Ãij

∂jα + 2α
(

Γ̄
i
jk Ãkj −

2

3
γ̄

ij
∂jK − 8πγ̄ijSj + 6Ãij

∂jφ

)
+ β

j
∂jΓ̄

i − Γ̄
j
∂jβ

i
+

2

3
Γ̄

i
∂jβ

j
+

1

3
γ̄

li
∂l∂jβ

j
+ γ̄

lj
∂j∂lβ

i
(3.16)
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Constraint propagation and damping
The stability properties of the basic BSSN system itself can be enhanced further by explicitly adding Hamiltonian and/or
momentum constraints.

Analogy Maxwell’s Equation
To illustrate this effect in a simple setting, let us return to Maxwell’s equations

C ≡ DiEi − 4πρe. (3.17)

By differentiating the continuity equation Dij
i + ∂tρe = 0 and using the evolution equation of Ei, it is easy to show that the time

derivative of this constraint variable vanishes identically,

∂tC = ∂t

(
DiEi − 4πρe

)
= Di

∂tEi − 4π∂tρe

= −DiDjDjAi + DiDiD
jAj − 4π

(
Diji + ∂tρe

)
= 0

(3.18)

This indicates that any violation of the constraint (C 6= 0) will persist and not propagate away.
Now consider adding the constraint violation parameter C times some constant a2 in the evolution equation. Then constraint
violations measured by the parameter C satisfy the wave equation(

−∂2
t + a2DiD

i
)
C = 0 (3.19)

If the condition C = ∂tC = 0 holds initially, then the two systems are equivalent analytically. However, the two systems behave
very differently numerically, since any numerical (e.g. roundoff) error will lead to a constraint violation |C| > 0, which will then
evolve differently in the two systems.
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Gauge conditions
There are several points to be kept in mind for the choice of the gauge condition in numerical
relativity.

Avoiding the appearance of coordinate singularities

Avoiding black hole singularities

The most widely adopted formulation for compact binary evolutions is the highly robust
“BSSN/MP” formulation, which combines the Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
3+1 decomposition of Einstein’s equations with the “moving puncture” (MP) gauge conditions
implement the 1+log/Γ-freezing gauge evolution equations.

Slicing:
α = 1 + log γ (3.20)

Shift:
∂tβi = 3

4αBi

∂tBi = ∂tΓ̃i − ηBi (3.21)

The results of the numerical solution obtained with different gauge conditions will be different, but
only in the “gauge-dependent” quantities. On the other hand, physical observables, such as
scalar quantities or gravitational waves (when extracted in the wave zone) will not depend on the
specific choice of gauge conditions, i.e., they will be “gauge-invariant”.
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